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The development of the wake behind a flat plate a t  a supercritical Reynolds number 
(Re = 200, based on the plate thickness and free-stream velocity) is simulated 
numerically by solving the two-dimensional unsteady Navier-Stokes equations with 
a finite-difference Galerkin method. The intermediate quasi-steady state of the wake 
development is investigated with an Orr-Sommerfeld analysis for complex 
frequencies and wavenumbers. Based on this linear, local stability analysis it can be 
shown that the quasi-steady state can be divided into regions of local absolute and 
local convective instability. One goal of this work is to determine the validity of the 
linear, local stability theory by comparing the predictions of the Orr-Sommerfeld 
analysis to the results of a numerical wake simulation. Based on this comparison, for 
the investigated flow field, the frequency selection mechanisms recently proposed by 
several authors are discussed. Base bleed is applied in the numerical simulation of the 
wake as a control parameter, following the well-known experimental result that 
sufficient base bleed reduces the strength of the vortex street (see e.g. Wood 1964). It 
can be shown that, from a critical base-bleed ratio, disturbances grow no longer in 
time but only in space, indicating a change of the global stability characteristics. In 
addition the linear, local stability analysis is used to investigate to what extent this 
global transition can be described. 

1. Introduction 
The local concept of absolutely and convectively unstable wave propagation was 

first introduced in the study of plasma instabilities by Twiss (1951, 1952) and 
Sturrock (1958) and subsequently by Briggs (1964) and Bers (1975). In recent years 
this concept has also been applied to hydrodynamic stability investigations. A flow 
is absolutely unstable if disturbance waves, generated by a pulsewise perturbation 
(Dirac delta function in space and time), contain amplified upstream- and 
downstream-travelling waves as well as one that remains at the location of its 
generation, while amplifying in time. One consequence of absolute instability is that 
the entire flow field is influenced by the impulse response for a large time. On the 
other hand, if the flow is convectively unstable amplified disturbance waves are 
convected away from the location of generation ; after a sufficiently large time the 
basic flow is again undisturbed locally. 

Koch (1983, 1985) investigated a family of wake profiles modelled with analytic 
functions using the local concept of absolute and convective instability. He revealed 
that the wake can be divided into regions of absolute and convective instability. The 
transition between these regions was found to occur slightly downstream of the 
reverse-flow region as indicated in figure 1. In  the corresponding regions of absolute 
and convective instability, the impulse response of a one-dimensional flow is 
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Absolutely unstable -+- Convectively unstable 

FIGURE 1.  Sketch of the local wake-stability properties. 

illustrated in the form of ray diagrams in the (z,t)-plane (see also $5.1). Koch (1983, 
1985) suggested that the shedding frequency of the wake is governed by a direct local 
resonance, occurring a t  the location where the transition from absolute to convective 
instability takes place and caused by the coalescence of an upstream-travelling and 
a downstream-travelling mode. 

Gaster (1968) investigated the physical meaning of the singularities occurring in 
the relation between complex frequencies and wavenumbers (dispersion relation), 
found by Betchov & Criminale (1966) for wake and jet profiles. He concluded that 
flows can exist that allow a disturbance wave to remain a t  the location of its 
generation while being amplified in time. He called the stability characteristics of 
such a flow a true time-growing instability ; he further concluded that for such a flow 
no steady laminar state exists. 

The local concept of absolute and convective instability has also been applied to 
the investigation of other shear flows. Huerre & Monkewitz (1985) showed that 
mixing layers become absolutely unstable if the two layers propagate in opposite 
directions with a velocity ratio lu,/u,l > 0.136. It was shown by Monkewitz & Sohn 
(1986) that hot jets are absolutely unstable. A survey and discussion of possible 
absolutely unstable flows is also given by Bechert (1985) and Huerre (1985). An 
experimental investigation concerning the absolute and convective instability of 
shear flows was carried out by Strykowski (1986). 

Interpreting the results of Mattingly & Criminale (1972) also suggests that the near 
wake in their investigation was absolutely unstable. Nguyen (1986) and Monkewitz 
& Nguyen (1987) have applied the local concept of absolute and convective 
instability to a family of wake profiles modelled with analytic functions. They found 
that if the displacement thickness of the boundary layer separating from the body 
is very small, the wake can be first convectively unstable then absolutely unstable 
and further downstream again convectively unstable. This kind of flow is called by 
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Monkewitz & Sohn (1986) type ‘AF’, meaning absolutely unstable with a free 
boundary. It has two transition points between absolute and convective instability. 
Flows having only one transition point, where the absolutely unstable region extends 
to the solid boundary of the body, are called type ‘ AB ’, meaning absolutely unstable 
with a solid boundary. A third type of unstable flow is the completely convectively 
unstable flow, called type ‘ C ’ .  The absolutely unstable nature of wake flows was also 
investigated by Triantafyllou, Triantafyllou & Chryssostomidis (1986). 

An interesting question discussed by Monkewitz & Nguyen (1987) is whether there 
exists a connection between the above-described occurrence of absolute and 
convective instability in the near wake and the selection of the pure vortex-shedding 
frequency observed in the wake saturation state. In  addition to Koch’s criterion the 
maximum-growth criterion of Pierrehumbert (1984) and the initial-resonance 
criterion of Monkewitz & Nguyen (1987) have been proposed. Pierrehumbert states 
that the Aow is dominated by the mode in the absolutely unstable region that stays 
a t  the location of its generation and has the maximum temporal growth rate. The 
initial-resonance criterion suggests that the shedding frequency is determined by the 
most upstream absolutely unstable location in the wake. A detailed discussion of 
the specific applications of these selection criteria in relation to the above-described 
local wake stability characteristics is given by Monkewitz & Nguyen (1987). 

To determine whether one of the above selection criteria can be successfully 
applied to predict the complex frequency (i.e. the frequency and the associated 
temporal growth rate) in ‘real wakes’, linear, local stability analysis is applied to the 
basic state of the wake (a more complete discussion of this basic state will be given 
shortly). Since the basic state cannot be easily obtained experimentally at  
supercritical Reynolds numbers, we decided to carry out the required analysis 
numerically. This enables the computation of the appropriate basic state for the 
stability analysis. Further, the numerical wake simulation was designed to document 
the amplification process leading to the saturation state as well as the saturation 
state itself. Therefore we developed a numerical scheme, the finite-difference 
Galerkin method, with which we solve the unsteady, two-dimensional and 
incompressible Navier-Stokes equations. This scheme is based on the finite- 
difference Galerkin method developed for the solution of the steady Navier-Stokes 
equations by Stephens et al. (1984). 

This paper is organized in the following fashion. In $2 we present the basic 
equations, namely the two-dimensional time-dependent incompressible Navier- 
Stokes equations and the Orr-Sommerfeld equation, which are used for the 
numerical simulation of the wake flow and the local, linear stability analysis, 
respectively. The numerical schemes used for the solution of these equations are 
described in $3. In $4 we present the results of the numerical simulation, where the 
development of the wake behind a flat plate a t  zero incidence a t  a supercritical 
Reynolds number (Re = 200) is discussed. In  $5 a description of the local concept of 
absolute and convective instability is given and is then applied to the quasi-steady 
solution of the Navier-Stokes equations. From the quasi-steady solution the 
temporal amplification process begins (see 9 4). It therefore represents a proper basic 
state for the stability analysis. The location marking the transition between regions 
of local absolute and convective instability is presented. Further, we compare the 
predictions of the local, linear stability analysis with the result’s of the numerical 
simulation. This enables us to discuss whether one of the frequency selection criteria 
can be successfully applied to the investigated flow field. Wake control is discussed 
in $6, where we have numerically simulated the control of the wake using base bleed 
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a t  several base-bleed coefficients ; sufficient base bleed has been shown experimentally 
to lead to a reduction in base drag, see e.g. Wood (1964, 1967), Bearman (1967) and 
Michel & Kost (1982). The stability of the wake with base bleed is also investigated 
using linear, local stability analysis and is discussed in terms of absolute and 
convective instability. Finally, in $ 7  we discuss our results and comment on some of 
the unresolved problems. 

2. Basic equations 
We consider a two-dimensional wake flow behind a flat plate a t  zero incidence with 

velocity vector v = (u ,w)  and pressure p ( x , z ) .  All flow quantities are non- 
dimensionalized by the free-stream velocity uz, the plate thickness D* and the fluid 
density p*. For the incompressible flow of a Newtonian fluid confined within the 
region 52, the conservation of mass and momentum can be expressed in differential 
form : 

V . v = O  in 52, (1) 

an  1 
at Re 
-+(u.V) v = -vp+-vzu in 

with Reynolds number Re = uz D*/v*, where v* is the kinematic viscosity. On the 
boundary 52, of the integration domain 52, the velocity v is equal to the boundary- 
value vector v,: 

The specified boundary data vR must satisfy 

v =  v, on 52,. (3) 

V.vd52 = vR-nd52, = 0, s, s,, (4) 

where n is the normal vector on the boundary 52,. 
To investigate the stability characteristics of the computed flow fields we apply the 

classical linear, local stability analysis for viscous flows. Following this approach, the 
disturbances superposed on the basic state are described by a complex perturbation 
stream function of the form 

J ( x ,  x ,  t )  = $ ( x )  ei(as-wt), (5 1 
where a and w are the complex wavenumbers and frequency respectively ; $(z )  is the 
complex amplitude function. The derivation discussed in detail by e.g. Schlichting 
(1982) and Drazin & Reid (1981) leads finally to the OrrSommerfeld equation 

which together with boundary conditions chosen appropriately for the investigation 
of wake profiles, 

. . A  

$ = $ ' = O  at z = f o o ,  (7)  

defines the stability eigenvalue problem ; the phase velocity c = w / a .  
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3. Numerical methods 
3.1.  Finite-difference Galerkin method 

The time-dependent, incompressible Navier-Stokes equations ( 1 )  and (2) together 
with the boundary conditions (3 ) ,  are integrated numerically in primitive variables 
with a finite-difference Galerkin method, introduced by Stephens et al. (1984) for the 
solution of the steady Navier-Stokes equations. We selected this method for the 
simulation of the wake because it allows the elimination of the pressure, thereby 
requiring only the specification of the velocity on the boundaries. Therefore a 
straightforward application of the no-slip condition can be applied on the plate ; we 
believe this to be important because of the absolutely unstable nature of the flow in 
this region. As poined out by Davis & Moore (1982) and Gentzsch & Schwamborn 
(1985) numerical diffusion (i.e. additional terms with the form of the physical 
diffusion term, introduced inherently or explicitly owing to the spatial discretization 
or to stability considerations, change the physical diffusion) must be avoided in 
separated flows. Hence we have employed central differencing. 

The finite-difference Galerkin method enables the removal of the discrete pressure 
by projecting the discretized Navier-Stokes equations into a divergence-free 
subspace using a Galerkin technique. Consider the following discretized form of the 
NavierStokes equations and the boundary conditions a t  time step t ,  : 

Vh.Vh = 0 On wh, (8) 

vh = B” on (10) 

with the index h indicating discrete quantities, spaces and operators. The boundary 
data are given by 8”. 

The equations are discretized on a staggered grid; SZ, and wh represent the inner 
mesh points for vectors and scalar quantities respectively and QRh contains the mesh 
points on the boundary (see figure 2) .  The discrete gradient and divergence operators 
must be adjoint in order to eliminate the pressure from the system of equations. In 
our application this was achieved by using central differencing on the staggered grid. 
The following discrete approximation can be made for the velocity vector : 

where @)z” are the discrete divergence-free base functions defined on 51, only. For a 
uniform grid containing n2 inner grid points the base functions are defined as follows 
(see Stephens et al. 1984) : 

@:;)m+t = ( 1 ,  i = Z , j  = m, 
= ( 1 ,  i = l + l , j = m ,  

= ( -  1 ,  l ) t ,  i = z+ 1 , j  = m+ 1 ,  
= ( - 1, - i = 1, j = m + 1 ,  
= (0, all other i , j ,  

1 = 1 ,  ..., n - 1 ;  m = l ,  ..., n-1 .  

(12) 

FLM 199 3 
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FIQURE 2. Definition of the discrete spaces. 

On the boundary QRh,  these internal base functions are zero. The boundary vector 
P must fulfil the boundary conditions (10) and can be expressed with a sum similar 
to that in (11).  The structure of the base functions remains unchanged, except that 
they must be defined on the boundary. The boundary vector can easily be computed 
for Dirichlet boundary conditions ; however, if the boundaries are time-dependent, 
P must be recalculated after each time step. The system of equations for determining 
the unknown coefficients a, can be derived with a discrete Galerkin technique, i.e. the 
scalar product of (9) with every base function must be zero: 

Using a discrete analogue of integration by parts the component of the scalar product 
containing the pressure can be written as 

(Vaph ,  @:)Oh = (ph,  @:)n,,-(ph,Vh.@:)wh = 0, i = 1, ..., m. (14) 

The base functions are divergence free and vanish on QRh.  Therefore the pressure is 
eliminated from the system of equations and we solve only 

The integration in time is performed with explicit Runge-Kutta time stepping. 
Therefore all quantities a t  the time step t ,  are known and the system 

Ma, = f (16) 

must be solved for the time derivative a, of the coefficient a. The right-hand side f 
contains the contribution of the convective and the diffusion term. It can be shown 
that the matrix M is symmetric and positive definite. The solution of a, is found 
iteratively by a conjugate gradient method (see Schwarz, Rutishauser & Stiefel 1968 
and Khosla & Rubin 1981). 
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We restricted ourselves here to a description of the finite-difference Galerkin 
method using a uniform mesh only. Arbitrary geometries with non-uniform mesh can 
be handled by transforming them onto a computational space with uniform mesh, 
where the algorithm just described can then be applied. For more details concerning 
this transformation the reader is referred to Stephens et al. (1984). 

3.2. Chebyshev collocation method 
In order to solve the temporally and spatially amplified Orr-Sommerfeld eigenvalue 
problem (6), (7), we adopt the Chebyshev collocation method (Chebyshev Matrix 
Method) introduced by Gottlieb, Hussaini & Orszag 1984). Laurien (1986) and Koch 
(1986) employed this method to investigate the Blasius boundary layer and 
Poiseuille flow. Here we introduced further modifications to accommodate wake- 
type profiles. The unknown amplitude function $ ( z )  should be obtained in the range 
[-co,co]. The numerical simulation of the wake is, however, carried out in an 
integration domain with finite extent in the z-direction. Therefore the range in which 
the amplitude function is computed is chosen to be [ - H ,  H I ,  where H is the distance 
of the upper and lower boundary of the integration domain fTom the centreline. We 
use Chebyshev polynomials T,(v) of order K to approximate $(z )  in the transformed 
coordinate 7 = ~ ( 2 ) :  

N-1 

= b K T K ( T ) .  (17) 
X - 0  

The range [ - H ,  HI is therefore Fapped into [ - 1 , 1 ]  via an exponential trans- 
formation. The approximation of $(z )  and its derivatives is not performed using an 
expansion with respect to the Chebyshev coefficients b,. Instead we apply the 
Chebyshev collocation method to obtain directly the values of &(z) a t  the collocation 
points : 

v j  = c o s m  7cj . 9 j = 0, ..., N - 1 .  (18) 

To distinguish between absolute and convective instability, we need the eigenvalue 
spectrum of the Orr-Sommerfeld equation for complex wavenumber a and complex 
frequency w .  

4. Numerical wake simulation 
The dashed line in figure 3 defines the integration domain for the unsteady wake 

simulation using the finite-difference Galerkin method. In  all the computations 
presented the flow is from left to right. 

The left boundary is chosen to be 5 0  (0 = 1 is the plate thickness) upstream and 
the right boundary 130 downstream of the trailing edge of the plate. The upper and 
lower boundaries are located at a distance of 180 from the centreline. To obtain 
sufficiently good boundary conditions for the left, upper and lower boundaries, the 
flow is first computed around the whole plate in the upper half-plane (see figure 3). 
For this purpose symmetry conditions on the centreline are used. At the left and 
upper boundary of this integration domain, 200  upstream from the leading edge and 
500 above the centreline respectively, free-stream conditions u = 1, w = 0 are 
applied. The half-domain computation is carried out by solving the unsteady 
Navieratokes equations. However, owing to the symmetry conditions applied on 
the centreline computation of vortex shedding is not possible. Nevertheless it is 
important to compute the solution around the whole plate in the upper half-plane to 

3-2 
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FIQURE 3. Integration domains and boundary conditions. 
X 

obtain boundary conditions for the left, upper and lower boundary of the full 
integration domain (dashed line) that  properly describe the displacement of the flow 
due to the presence of the plate and the development of the boundary layer on the 
plate. It seems worth mentioning that the potential solution was applied as a fixed 
boundary condition on the upper and lower boundaries of the integration domain, 
framed by the dashed line, a t  z = 18; however, the results proved to  be 
unsatisfactory. The velocity field did not asymptotically approach the potential-flow 
conditions applied on the boundary. 

The left, upper and lower boundaries of the full domain (dashed line) are chosen 
to be sufficiently far away from the trailing edge and the centreline, respectively, 
that the fluctuations caused by vortex shedding can be neglected. Typically, in the 
saturation state, the r.m.s. fluctuations at these outer boundaries are more than two 
orders of magnitude lower than the maximum r.m.s. fluctuations occurring in the 
wake. For this reason fixed (time-independent) boundary conditions are applied. At 
the downstream boundaries the u-velocities are extrapolated after every time step 
with the condition 

azu  

a x 2  
- = 0. 

Numerical tests have shown that (19) is most suitable because it produces minimum 
upstream influence in the simulation of the wake. After computing the w-velocities 
using (1  1)  i t  is determined whether the extrapolated velocities satisfy condition (4) ; 
this was found to be the case for all the simulations. 

After the boundary conditions for the integration domain, defined by the dashed 
line in figure 3, could be determined an initial flow field was first computed with fixed 
velocity values on the whole boundary, leading to a flow field similar to the one in 
figure 8 a t  t = 0. Before the wake simulation with a flexible outflow boundary 
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FIQURE 4. Temporal development of the wake, Re = 200. (a )  Maximum time derivative au/at in 
the flow field; ( b )  u-Velocity component at x = 3.9, z = 0.625; (c) Absolute value of the amplitude. 

condition is started the initial flow field is made symmetric about the centreline to 
reduce the perturbation level as much as possible. 

Figure 4 shows the temporal development of the numerical simulation at 
Re = 200. Figure 4(a) shows the maximum time derivative of the u-velocity com- 
ponent in the integration domain as a function of the non-dimensionalized time 
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FIGURE 5. u-Velocity component at x = 3.9, z = 0.625 during the development to the 
quasi-steady state. 

t = t*uz/D*. This diagram can only explain how ‘steady’ the entire flow is and 
cannot be directly related to the development of the flow a t  one point. Therefore the 
oscillations occurring during the growth of (au/at),,, (figure 4 a )  have no physical 
meaning. However, they are caused by the oscillations in the wake and have the same 
frequency. In  figure 4 one can distinguish four domains : the development to a quasi- 
steady state ; the linear growth region ; a transition region to the saturation state ; 
and the nonlinear saturation state. 

After starting the simulation ( t  = - 171) the development toward the steady 
solution of the Navier-Stokes equations is seen. The steady solution, however, 
cannot be reached because the time-dependent simulation is carried out a t  a 
supercritical Reynolds number and hence the flow is unstable and even infinitesimal 
perturbations are amplified. However, we define a quasi-steady state to exist a t  
t = to = 0 in figure 4 (a).  A characteristic development of the velocity a t  one location 
in this first domain can be seen in figure 5 ,  where the u-velocity component a t  the point 
2 = 3.9, z = 0.625 is plotted. It can be seen that the velocity value converges quickly 
to that of the quasi-steady state. 

Experimentally, the amplification of the perturbations begins a t  an amplitude 
commensurate with the background turbulence level. Numerically, an equivalent 
‘numerical fluctuation level’ exists which depends on the choice of the initial 
condition, the spatial discretization, and, in the case of the finite-difference Galerkin 
method, is also a function of how accurately the system of equations (16) is solved 
iteratively. Although both represent a source of perturbations, it  is clear that the 
‘numerical fluctuation level ’ is by no means a direct simulation of the turbulence 
level present in a wind tunnel. This can, for example, be seen by investigating the 
spatial distribution of the background fluctuations. In a wind-tunnel test section 
their distribution can be regarded as approximately uniform, whereas in the 
numerical simulation the fluctuation level depends on the computational grid which, 
in our wake simulation, is not uniform in the z-direction. The highest error due to the 
spatial discretization occurs in the regions, about 6 0  above and below the centreline, 
where the change of the grid size is largest. 

In  the simulation in figure 4 we started with a symmetric flow field and (16) was 
solved to an accuracy of e = lo-’ ; correspondingly the growth of the time derivative 
commences after it has reached a value of about lo-’. Using a higher e, or an initial 
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FIGURE 6. Development of the u-velocity component at 5 = 3.9, z = 0.625 and uy(t). 

flow field that was not forced to be symmetric about the centreline, resulted in a 
higher initial ‘numerical fluctuation level ’. The starting process of the wake 
development is still dictated by the two contrary tendencies to reach the steady 
solution of the NavierStokes equations as well as the growth of disturbances in time. 
The exponential amplification rate as well as the initially selected frequency of the 
perturbations are also not affected by these changes. However, the amount of time 
needed to detect the amplification process in the simulation is now decreased owing 
to the higher initial ‘numerical fluctuation level ’. Clearly, to facilitate the vortex- 
shedding state artificial high disturbances can be introduced thereby passing the 
quasi-steady state in figure 4 (a) .  Such time-saving techniques have been employed 
by many authors, e.g. by Braza, Chassaing & Ha Minh (1986) and Sun, Shen & Zhu 
(1988). As we shall subsequently show, the investigated wake flow can be regarded 
as a self-excited oscillator and hence even when the ‘numerical fluctuation level’ is 
reduced the saturation state cannot be avoided, but the time required to reach this 
state will then be increased. 

The temporal development of the u-velocity component, a t  one point in the flow 
field, is shown in figure 4(b ,  c ) .  The velocity signal in figure 4(6) is obtained by 
subtracting the mean velocity uM from the instantaneous u-velocity value (see 
figure 6). From figure 4 ( b ,  c )  it is clear that a well-defined exponential growth rate of 
the fluctuations occurs simultaneously with the increase of the maximum aulat. We 
define the linear growth region to exist where there is a well-defined exponential 
growth in time. 

The constant exponential growth rate occurring a t  one onset frequency is the same 
everywhere in the wake. This can be seen from figure 7 where, as a characteristic 
result, the absolute value of the amplitude at z = 2.0 is shown as a function of the 
time and the coordinate x. The simulation reveals that even at the grid points that 
are located next to the trailing edge of the plate the same slope of 1.41 versus t is 
obtained. 

An interesting exception is revealed by the u-velocity fluctuations on the centreline 
of the wake. This will be discussed later in this section in connection with the 
presentation of the perturbation flows. In  the transition region to the saturation 
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FIGURE 7. Absolute value of the amplitude as a function of the time and the 
coordinate x a t  z = 2.0. 

FIGURE 8. Temporal development of the wake in terms of ( a )  instantaneous streamlines and 
( b )  lines of constant vorticity. 
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FIGURE 9. Instantaneous perturbation streamlines in (a) the linear growth region and 
(b )  the saturation state. 

state the linear growth rate is arrested by nonlinear effects which become significant ; 
in figure 4(c )  the nonlinearities begin to alter the linear growth rate when the 
amplitude A z 0 . 0 1 ~ ~ .  These nonlinear effects lead to the saturation state commonly 
referred to as the KBrmrin vortex street. Figure 8 shows the development of the wake 
flow in terms of instantaneous streamline plots and the corresponding lines of 
constant vorticity ; negative vorticity is marked by solid lines, positive vorticity by 
dashed lines. At time to the streamline pattern of the quasi-steady solution shows a 
symmetric reverse-flow region extending 3.60 downstream of the trailing edge. The 
first effect, seen in the streamline plots occurring for t > to ,  is a change in the 
topological structure of the streamline patterns a t  the saddle point located a t  the end 
of the reverse-flow region. Here the symmetry is removed and the reverse-flow region 
breaks open. This has been called the saddle-point instability by Sun et al. (1988). 
The time sequence in figure 8 also shows the flow a t  the end of the linear growth 
region at  t = 240 and the KarmQn vortex street a t  t = 466. 

The structural changes which occur during the transition from the linear growth 
region to the saturation state can best be observed by analysing the perturbation 
flow (see also Hannemann & Oertel 1986, 1987). For this purpose the instantaneous 
perturbation streamlines are plotted in figure 9 ; the perturbation flows are obtained 
by subtracting the mean flow from the instantaneous flow. I n  figures 10 and 11 
streamline plots and u-velocity profiles of the quasi-steady flow field and the mean 
flow in the saturation state are shown. From these plots we conclude that the mean 
flow changes continuously during the development to the saturation state. For this 
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FIGURE 10. Streamlines of (a) the quasi-steady flow and (6) the mean flow in the 
saturation state. 
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FIGURE 11. u-Velocity profiles of (a) the quasi-steady flow and ( 6 )  the mean flow in the 
saturation state. 
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FIGURE 12. Development of the amplitude of the u-velocity component at (a) x = 3.9, z = 0.625 
and (b) on the centreline at x = 3.9. 

reaaon the appropriate mean flow necessary for the computation of the perturbation 
flow can only be obtained at the beginning of the wake development in the linear 
growth region and in the saturation state. 

In the linear growth region the vortex centres of the perturbation flow lie on the 
centreline of the wake and the vortices rotate alternately, clockwise and 
counterclockwise; see figure 9(a). In the transition region the structure changes to 
the well-known staggered arrangement of the KBrmBn vortex street which can be 
observed in figure 9 (b) ; here the perturbation streamlines in the saturation state are 
shown. 

From the perturbation streamlines in figure 9 (a )  it can be seen that the u-velocity 
fluctuations on the centreline must be zero until the staggering of the vortices begins. 
However, w-velocity fluctuations are present and are amplified with the same 
amplification rate as the u-velocity fluctuations off-centreline. The development of 
the amplitude of the u-velocity fluctuations on the centreline is compared in figure 12 
with the development shown in figure 4(c). It becomes clear that at  x = 3.9 no 
periodic fluctuation can be detected until t = 120. As a consequence of the staggering 
the Strouhal number of the centreline, based on the u-velocity signals, is at  once 
twice the onset frequency off-centreline. It can also be seen from figure 12 that the 
growth rate at the wake centreline is exactly twice the growth rate found everywhere 
else in the flow field. Investigating the development of the vortex street behind 
circular cylinders next to the centreline more close, P. J. Strykowski (1987, private 
communication) was able to confirm this result experimentally. Similarly to figure 7, 
it can be observed from figure 13 that the double growth rate is constant everywhere 
on the centreline. It is also clear from figure 13 that the staggering does not occur 
immediately for all z-positions. It is detected first at  x = 11.4 and, after a period of 
At m 70, is observable at the grid point next to the plate. The end of the linear growth 
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FIGURE 13. Absolute value of the amplitude as a function of the time and the coordinate z on 
the centreline. 
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region, defined by the time when the exponential growth is arrested, turns out to be 
the same on and off the centreline. 

In the whole linear growth region the staggering is so small that the double 
frequency can only be detected on the grid points lying on the centreline. In  the 
saturation state, when the staggered arrangement of the vortices is fully developed, 
the u-velocity signals recorded a t  one x-position and at several z-positions show a 
continuous change from one frequency far away from the centreline to the double 
frequency on the centreline. This fact is well known from many experimental 
investigations (see e.g. Kovasznay 1949). 

As we shall see in $5.2 linear, local stability analysis as well as two-dimensional 
linear stability analysis, used by Jackson (1987) for the investigation of the 
transition from a steady to a periodic flow past bodies of various shapes, show that 
the perturbation streamlines of the wake reveal the same symmetric pattern as 
shown in figure 9(a).  Therefore the commencement of the staggering is the first 
indication of nonlinearity. An explanation for the double growth rate on the 
centreline based on a stability analysis can be derived from Stuart (1960). He 
investigated the nonlinear mechanics of disturbances in parallel flows and suggested 
that the occurrence of a first harmonic of the basic perturbation due to nonlinearity 
is a quadratic effect. Another consequence of the nonlinearity can be observed by 
monitoring the oscillation frequency during the period of growth. In figure 14 it is 
shown that the dimensionless frequency, the Strouhal number St = f*D*/uZ, is 
constant during linear growth, rises rapidly when the nonlinearity becomes 
significant in the transition region, and finally reaches a constant value in the 
saturation state. The same behaviour occurs on the centreline if the Strouhal number 
is computed using the u-velocity signals. The onset frequency as well as the 
saturation frequency are then exactly twice the values off the centreline. A similar 
behaviour has been found experimentally for the time-dependent flow behind a 
circular cylinder ; see Strykowski (1986) and Provansal, Mathis & Boyes (1986). It 
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FIQURE 14. (a) Absolute value of the amplitude and (b) Strouhal number St versus time t .  

should be mentioned that everywhere in the flow field the frequency increase is non- 
trivial and according to the numerical simulation is on the order of 10%. The data 
taken by Strykowski (1986) show that the difference between the onset frequency 
and the saturation frequency increases with Reynolds number. He found for instance 
that at Re = 80 the onset frequency already differs by 42% from the saturation 
frequency. 

The orthogonal grid for the above-described simulation contains 122 x 101 points 
in the x- and z-directions respectively. It is uniform in the x-direction (Ax = 0.15) and 
highly stretched in the z-direction (Azmin = 0.125) in order to provide the best 
possible numerical resolution in the boundary layer and wake region. It was verified, 
as pointed out in detail by Hannemann (1988), that  a better resolution using a grid 
with 166 x 151 points as well as the use of a longer integration domain has negligible 
influence on the results. 

A constant time step of dt = 0.03 is used throughout the simulation. It was found 
that the simulation does not depend on either the temporal integration scheme 
(Runge-Kutta time stepping of 2nd and 4th order was used) or on the time step as 
long as it fulfils the stability requirement of the Runge-Kutta scheme. 
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To test the influence of the outflow boundary condition (19) on the amplification 
of perturbations, a fixed outflow boundary condition was used. Even under this 
rather restrictive outflow condition the wake instability and the amplification rate 
and onset frequency were the same as with the flexible outflow conditions. This 
suggests that the outflow boundary conditions used have a very weak influence on 
the temporal behaviour of the disturbances. 

Using the 122 x 101 grid with 2nd-order Rung-Kutta time stepping ( E  = lO-O, 
accuracy to which (16) is solved iteratively) the CPU time per time step and grid 
point is 3.6 x lop4 s on a CRAY-1/S, resulting in a total run time from the quasi- 
steady state to the saturation state of about twenty hours. 

Further, the saturation frequency obtained from the numerical simulation can be 
compared to the experimental data from Hannemann, Lynn & Strykowski (1986), 
taken a t  the same flow conditions as in the simulation. The computed Strouhal 
number St = 0.113 agrees well with the measured value of St = 0.116. 

5. Stability analysis 
5.1. Absolute and convective instability 

The stability characteristics of a flow can be determined by investigating its impulse 
response. An impulse ideally contains modes of all frequencies and wavenumbers 
from which the flow amplifies the mode or band of modes that is unstable. In  
hydrodynamic stability investigations the impulse response was investigated by 
Gaster (1968), based on an Orr-Sommerfeld analysis, and by Huerre & Monkewitz 
(1985) who considered inviscid shear flows. From these investigations it is shown 
that the asymptotic large-time behaviour of the impulse response based on linear, 
local stability theory can be summarized as follows. On each ray x/t = const in the 
(x, t)-plane (see figure 1) the mode with the wavenumber a*, given by 

dw X 
-(a*) =?, 
d a  

where dw/da is the complex group velocity, emerges and is amplified with the growth 
rate 

a w  
cri = wi(a*) -a: - (a*). 

d a  

To determine whether the flow is convectively or absolutely unstable we must search 
for points of the dispersion relation for complex wavenumbers and frequencies where 
dw/da = 0. From (20) it follows that under these circumstances the mode remains at 
the location of its generation and therefore, according to (21), depending on the 
value of wi, the ‘local ’ mode is amplified or damped. Betchov & Criminale (1966) and 
Mattingly & Criminale (1972) showed that the dispersion relation for wake profiles 
contains points where the group velocity is zero. These singularities occur where an 
upstream- and a downstream-travelling mode coalesce. For the determination of 
these singularities, which are in general branch points of order two, the pinching 
requirement must be fulfilled (see Bers 1975). The concept of absolute and convective 
instability is based on the location of these branch points in the complex w-plane. It 
has been applied by Briggs (1964) and Bers (1975) and can be formulated as follows : 
an unstable flow is absolutely unstable if the branch-point singularities of its 
dispersion relation lie in the upper half of the complex w-plane (wi > 0) ; if they lie in 
the lower half-plane (mi < 0) the flow is convectively unstable. In  figure 1 the impulse 
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responses for an absolutely unstable and a convectively unstable flow are sketched 
in the (x,t)-plane. 

The generated wave packet is bounded by two rays having zero amplification 
(ai = 0). Inside the wedge disturbances grow exponentially and outside they are 
damped. The type of instability can also be determined equivalently by locating the 
position of the ray x/t = 0. If this ray lies inside the wedge of amplified wavenumbers 
the flow is absolutely unstable and the corresponding wavenumber is amplified in 
time at  the location of its generation ; disturbances also amplify upstream and 
downstream. For convective instability the ray x / t  = 0 lies outside the amplified 
wedge and therefore local disturbances are damped. 

It should be mentioned here that the terminology of absolute and convective 
instability can only be used within a partxular reference frame (see Landau & 
Lifshitz 1959). Therefore we shall discuss the stability characteristics in a reference 
frame fixed with respect to the flat plate. 

5.2. Orr-Sommerfeld analysis 

The Orr-Sommerfeld stability analysis is based on the investigation of small- 
amplitude disturbances superposed on a basic state. It therefore can a priori only be 
applied for the investigation of flows near the critical Reynolds number or near the 
onset of the instability as long as the amplitudes of the perturbations are small. From 
this it follows that the basic state chosen for our analysis must be the quasi-steady 
solution of the Navier-Stokes equations. 

It has already been mentioned in $2.2 that in the theory of the linear, local 
stability analysis the basic state is considered to be locally parallel. This assumption 
is not fulfilled in the near-wake region. In the vicinity of the trailing edge and near 
the saddle point at the end of the reverse-flow region the variation of the u-velocity 
profiles in the downstream direction cannot be neglected ; further downstream 
however the parallel-flow assumption is approximately fulfilled. Nevertheless, given 
the simplifying assumptions, it is very important to compare the predictions of the 
linear, local stability theory using the appropriate basic state with the results of the 
numerical simulation. 

In figure 15 the eigenvalues of the combined stability analysis are plotted in the 
complex a-plane for the u-velocity profile of the quasi-steady solution at  x = 4.0; 
only the symmetric modes (KQrmQn modes) are presented. 

The branch-point singularity for the investigated velocity profile (in figure 15) has 
a positive temporal growth rate wi and therefore according to the concept of absolute 
and convective instability the profile is absolutely unstable. To find the transition 
point between absolute and convective instability in the wake we computed the 
eigenvalue spectrums for several u-velocity profiles in the near-wake region and 
tracked the location of the branch-point singularities. The temporal amplification 
rate wi, and frequency w, occurring at  the branch-point singularities are plotted in 
figure 16 as a function of the distance from the trailing edge. 

It is clear from figure 16 that the region of absolutely unstable velocity profiles 
extends from the flat plate to approximately x = 4.56. According to the classification 
given by Monkewitz & Sohn (1986) the flow is of type ‘AB’, meaning absolutely 
unstable with a solid boundary. The velocity profile separating the region of absolute 
and convective instability has a centreline velocity ucL = 0.04. Hence the transition 
to convective instability occurs slightly downstream of the reverse-flow region, as 
previously described by Koch (1985). Using a modified hyperbolic-tangent wake 
model he found the centreline velocity a t  the transition point to be ucL = 0.03. 
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FIGURE 15. Eigenvalues of the symmetric mode; u-velocity profile at z = 4.0. 

Monkewitz & Nguyen (1987) found that absolute instability is possible up to a 
centreline velocity of uCL = 0.09, 

The change of the wake profiles in the downstream direction can be well described 
by considering the development of the centreline velocity and the maximum slope 
(duldz),,,. The centreline velocity typically changes from zero a t  the body, 
becoming negative in the reverse-flow region, and finally increases further 
downstream. The largest value of the maximum slope occurs for the profile right a t  
the wake generating body. After a rapid reduction initially it decreases monotonically 
in the downstream direction. 

The results of the present viscous investigation as well as the inviscid ones of Koch 
and Monkewitz & Nguyen reveal that the location of the downstream boundary of 
the absolutely unstable region is mainly dominated by the centreline velocity. That 
the stability characteristic of a profile is sensitive to the centreline velocity can also 
be seen from figure 16; the relative maximum of the oi curve occurs a t  the position 
with the highest reverse flow. The stability characteristic of the profiles located 
directly a t  the trailing edge however seems to be dominated by the maximum slope. 
In our investigation the rapid increase of (duldx),,, is accompanied by an increase 
in the temporal amplification rate. Monkewitz & Nguyen (1987) systematically 
varied the centreline velocity and the slope of their velocity profiles. In terms of their 
classification we have a set of profiles with a large initial shear-layer thickness. They 
found that for profiles with zero centreline velocity and a very thin initial shear-layer 
thickness the temporal amplification is negative, indicating convective instability. 

From the results of the numerical simulation we know that the initially selected 
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FIQURE 16. Frequency w, and temporal amplification rate o, at the branch-point singularities : 0,  
onset frequency ; A, corresponding amplification rate ; and , saturation frequency of the 
numerical simulation. 
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frequency changes during the wake development. Therefore, regarding the frequency 
selection criteria we must differentiate between the selection of the onset frequency 
and the frequency in the saturation state; linear stability analysis is most 
appropriately applied to the onset of instability. The squares and the triangle in 
figure 16 mark the onset frequency and the corresponding temporal amplification 
rate obtained from the numerical simulation in the linear growth region (see figure 4). 
Neither values appears on the stability curves at the same x-position. This shows 
that none of the velocity profiles in the near wake can predict correctly both the 
frequency and the temporal amplification rate for the onset of instability. It appears 
therefore, for the invetigated flow field, that no selection criterion based on local 
wake properties can be derived. 

From figure 16 it can be seen that all frequencies predicted by the stability theory 
in the region of absolute instability are in reasonable agreement with the frequencies 
found in the numerical simulation. Therefore it will be interesting to see to which 
prediction the selection criteria, described in $1,  will lead, especially for the variation 
of the base-bleed coefficient. 

Koch’s criterion was developed to predict the frequency only in the saturation 
state. He suggests that the flow in the saturation state is dominated by a local 
resonance occurring at the transition from local absolute instability to local 
convective instability (wi = 0). Since this criterion is based on the linear stability 
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Onset of instability Saturation state Error in % 

Re = 200 St," "1 St,,, Ni St "1 

Numerical simulation 0.1032 0.053 0.11339 0 - - 

Initial-resonance criterion 0.118 0.138 14 160 
Max.-growth-rate criterion 0.1006 0.1 10 2.5 107 
Koch's criterion 0.1146 0 1.06 0 

TABLE 1 .  Summary of the predictions of the selection criteria 

- - 
- - 

- - 

analysis it should therefore be applied only in the vicinity of the critical Reynolds 
number, because here the saturation amplitudes are small. However W. Koch (1987, 
private communication) further suggests that  this criterion can also be applied for 
supercritical Reynolds numbers, because he assumes that the flow in a nonlinear 
saturation state is still dominated by a local resonance, which has a frequency very 
close to the one predicted by linear theory applied to the basic steady state. Given 
a flow of type 'AB', where the absolutely unstable region extends up to the wake 
generating body, the initial-resonance criterion, introduced by Monkewitz & Nguyen 
(1987) and the maximum-growth criterion, proposed by Pierrehumbert (1984) 
always predict a frequency and a corresponding positive temporal amplification rate 
selected in the linear state. With both these criteria the saturation frequency can 
only be predicted if the frequency does not change during the wake development. It 
is clear from the numerical simulation that this does not hold true for the 
investigated flow. Consequently the initial-resonance criterion and the maximum- 
growth criterion can only be used for the prediction of the onset frequency and its 
amplification rate. The shape of the wi curve in figure 16 shows that the initial- 
resonance criterion and the maximum-growth criterion coincide. However in 
addition the wi curve has a relative maximum and for completeness we related the 
maximum-growth criterion also to this distinguished point. 

The predictions of the selection criteria are summarized in table 1.  In  addition to 
the selected Strouhal number St and the corresponding amplification rate wi, the 
deviation of these predictions from the values obtained by the numerical simulation 
are presented. It can be seen from table 1 that  the initial-resonance criterion and the 
maximum-growth criterion predict an onset frequency that differs by 14 YO and 2.5 YO 
respectively from the value of the numerical simulation. However the corresponding 
temporal amplification rate deviates by more than 100 % for both selection criteria. 
We also recognize that Koch's criterion predicts a saturation-state frequency that 
differs by 1.06 %. A further discussion of the validity of any selection criterion based 
on local wake properties will be presented in $7 after base bleed has been applied as 
a control parameter in the next section. 

Figure 17 shows a comparison between the perturbation streamlines obtained from 
the numerical simulation in the linear growth region (figure 17a, which has already 
been discussed in $4) and the perturbation streamlines computed from a symmetric- 
mode eigenvector (figure 17b) of the u-velocity profile a t  5 = 4.0. Both plots reveal 
that the vortex centres are located on the wake centreline. Therefore the structure 
of the perturbation flow, corresponding to the onset of the instability, can be 
predicted qualitatively by the local linear stability analysis. This structure was also 
found by Jackson (1987) in wakes at the critical Reynolds number using a global, 
linear stability analysis. 



Numerical simulation of absolutely and convectively unstable wake 77 

4 1  

z 0 -  

-4  I I I I 
- 5  0 I 13 

FIGURE 17. Instantaneous perturbation streamlines from (a) the numerical simulation in the 
linear growth region and (b) the stability analysis. 
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6. Wake control 
Base bleed can be applied in the numerical simulation of the wake as a control 

parameter. It is well known from experimental investigations, e.g. Wood (1964, 
1967), Bearman (1967) and Michel & Kost (1982) that sufficient base bleed leads to 
a reduction of base drag. This effect is accompanied by the decay of the strength of 
the vortex street and the change of the pure-frequency vortex street to a band of 
amplified frequencies in the wake. A direct comparison between these experiments 
and our numerical investigations will however not be possible because the 
experiments were carried out at very high Reynolds numbers with turbulent flows, 
whereas we investigate unsteady laminar flows at the Reynolds number Re = 200. 

In the numerical simulation we apply several bleed coefficients 

m* 
cq = - 

U*, D* ’ 

where m* is the mass flow rate divided by density and for unit depth which is blown 
into the wake at the base of the plate. All simulations with base bleed are started 
from the quasi-steady solution of the ‘natural’ wake development (see figure 4). The 
base bleed is produced numerically in such a way that at all grid points located at  
the base, except the upper and lower one, the no-slip condition is replaced by a 
constant u-velocity component depending on the bleed coefficient. 

Similar to the wake development described in $4 the simulations for several bleed 
coefficients show the development to a quasi-steady state, followed by a linear 
growth and transition region which finally leads to a saturation state. For two bleed 
coefficients, streamline plots and u-velocity profiles of the quasi-steady and 
saturation state are shown in figures 18 and 19. It can be seen that for the higher 
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FIGURE 19. u-Velocity profiles of the quasi-steady state at (a )  c, = 0.04 and (a) cp = 0.162. 

bleed coefficient the amplitudes of the fluctuations in the saturation state are reduced 
in the near-wake region. The exponential temporal amplification rate oi of the 
selected onset frequency is reduced linearly with increasing bleed coefficient, as 
shown in figure 20. If the straight line in figure 2 is extrapolated (dashed line), a 
critical bleed coefficient of cq = 0.214 can be determined, where the temporal 
amplification is zero. This means that for higher bleed coefficients than cqCrit, 
fluctuations are temporally damped. To verify this we applied a bleed coefficient of 
cq = 0.24 > cqCrit. This simulation reaches a state where the maximum time derivative 
in the flow field stays at a constant level of and no temporal amplification of 
fluctuations can be detected. Before this flow field is investigated in more detail some 
comments on the global flow behaviour, described by the numerical simulation, 
should be made. According to the definition of absolute instability the conclusion 
could be drawn that the wake flow at a control parameter, where disturbances are 
temporally amplified at a fixed position, is absolutely unstable. However, the 
concept of absolute and convective instability is purely local and therefore the global 
stability characteristic should not be referred to as absolutely unstable. It is more 
appropriate to describe the global flow under these circumstances as a self-excited 
oscillator. If no perturbations are temporally amplified the global flow will behave 
either as a spatial amplifier or will be completely stable. In the terminology used here 
the control parameter, at  the transition from the behaviour as an amplifier to an 
oscillator, is called the critical control parameter. 
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RQURE 20. Exponential temporal amplification rate w, as a function of the bleed coefficient c,. 

To determine whether the flow at cq = 0.24 is an amplifier or completely stable we 
investigate the spatial development of fluctuations. In the simulation, where the 
system of equations (16) is solved to an accuracy of E = initially no spatial 
amplification of fluctuations can be detected. However if the flow behaves as an 
amplifier it will depend strongly on the magnitude of the background disturbance 
level. If this is too low it is possible that the spatial amplification of fluctuations 
cannot be detected. For this reason the ‘numerical fluctuation level ’ is increased step 
by step by increasing E .  The introduction of higher fluctuations provides a better 
means of detecting the presence of spatial amplification. For this investigation the 
u-velocity over time at several streamwise positions in the wake located at a fixed 
z = 0.625 are recorded. An analysis of these signals revealed that the r.m.s.-value was 
increased in the downstream direction, indicating spatial amplification. 

The change of the onset and saturation frequency with the bleed coefficient is 
shown in figure 21. From the numerical investigation described in $4 we know that 
the change of the onset frequency leading to the saturation frequency is due to 
nonlinear effects. According to figure 21, showing that the difference between onset 
and saturation frequency is reduced with increasing bleed coefficient, it follows that 
the influence of nonlinearity should also be reduced. If we extrapolate both straight 
lines in figure 21 to higher bleed coefficients we get a point of intersection at the 
critical bleed coefficient cqerit, predicted from figure 20; at this point the onset and 
saturation frequency are identical. 

A comparison with the experimental investigation of Strykowski ( 1986) reveals 
that an increasing bleed coefficient has a similar influence on the wake flow as a 
decreasing Reynolds number. Strykowski (1986) suggests that at  subcritical 
Reynolds numbers the wake behind a circular cylinder can behave as a spatial 
amplifier (oi < 0), whereas at supercritical Reynolds numbers it is similar to a self- 
excited oscillator (oi > 0). He also found that at the critical Reynolds number the 
onset and saturation frequency are identical and for increasing Reynolds number the 
difference between these frequencies increases linearly. 
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FIQURE 21. Onset (0 )  and saturation frequency (m) as a function of the bleed coefficient cp. 

We shall now investigate the quasi-steady states of the simulations with different 
bleed coefficients using local, linear stability analysis to see whether it can predict the 
transition of the global stability characteristic. For this purpose we again track the 
location of the branch-point singularities of the dispersion relation for complex 
frequency and wavenumber. 

The frequency w, and the temporal amplification rate wi at  these singularities are 
plotted in figure 22. Here, for comparison, the eigenvalues of the natural wake de- 
velopment already shown in figure 16 are plotted again. It can be seen from figure 22 
that the wi curve for one bleed coefficient in the absolutely unstable area always 
lies under the wi curve corresponding to the next lower bleed coefficient. This shows 
in principle that increasing the bleed coefficient reduces the temporal amplification 
rate. However, we note that the wi curve corresponding to the bleed coefficient 
cq = 0.24, for which the numerical simulation indicated no temporally amplifying 
perturbations, maintains a small region of absolute instability near the body. This 
indicates, as already discussed by Chomaz, Huerre & Redekopp (1987) and 
Monkewitz (1988), that according to local stability analysis the absolutely unstable 
region must have a finite size before the flow can behave as an oscillator. The same 
result could be obtained by variation of the Reynolds number (see Hannemann 
1988). This indicates that local stability analysis can only give a lower bound on the 
critical control parameter (i.e. Reynolds number) a t  which the temporal amplification 
rate of the global non-parallel wake flow becomes positive. The shape of the wi curves 
also indicates that for a bleed coefficient between cq = 0.065 and cp = 0.113 a flow 
may exist that is initially absolutely unstable, followed subsequently downstream by 
regions of convective, absolute and finally convective instability. 

The shape of the wi curves shows that the temporal amplification rate is always a 
maximum directly a t  the trailing edge of the plate. In the downstream direction it 
first decreases and then reaches a local maximum before it decreases again 
monotonically. From figure 22 it  can also be seen that the velocity profiles located 
directly behind the trailing edge are not as highly influenced by the base bleed as the 
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FIGURE 22. Frequency wr and temporal amplification rate wi at the branch point singularities: 
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profiles located further downstream, where the temporal amplification rate is more 
strongly decreased with increasing bleed coefficient. The reason for this can be found 
in the particular shape of the velocity profile at  the trailing edge of the plate. As 
already described at  the beginning of this section the base bleed is performed 
numerically in such a way that all points at  the base have a constant u-velocity 
component except the upper and lower points; here the no-slip condition is 
maintained. Therefore the u-velocity profile at  the trailing edge always has two 
points where the velocity is zero. The stability investigations have shown that the 
minimum velocity value of the profile is one indication of whether the profile is 
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FIQURE 23. Comparison of the onset frequency St,, and temporal amplification rate, for the onset 
of the instability, by the initial-resonance criterion (H) and the maximum-growth criterion (0 )  
with the values obtained by the numerical simulation ( x ). 

absolutely or convectively unstable. Independent of the bleed coefficient the 
minimum velocity value at  the trailing edge is zero and therefore this profile always 
has a relatively higher temporal amplification rate than the profiles further 
downstream where, for increasing bleed coefficient, the wake defect is more and more 
reduced. The shape of the wf and w, curves can also be used to determine how parallel 
the flow field is, because changes in the eigenvalue as a function of the downstream 
direction is an indication of how much the velocity profiles change. Based on this 
criterion we find that for x 2 2 the wake becomes more parallel, especially for 
increasing bleed coefficient; however for 0 < x < 2 the wake is still highly non- 
parallel. 
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FIGURE 24. Predicted saturation frequency St,, with Koch’s criterion (m) in comparison with 
the frequency obtained by the numerical simulation ( x ). 
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The development of the onset frequencies and corresponding amplification rate as 
a function of the bleed coefficient can qualitatively be well described by the initial- 
resonance criterion and the maximum-growth criterion ; the latter predicts 
frequencies that are also quantitatively close to the values of the numerical 
simulation (see figure 23). The predicted temporal amplification rates, on the 
contrary, differ completely from the ones obtained by the numerical simulation. It 
turns out that the agreement for cq = 0.065 can be regarded as coincidental. 

The prediction of the saturation frequency using Koch’s criterion leads, for the 
natural wake development and the two lowest bleed coefficients, to values that are 
very close to the frequencies of the numerical simulation ; however for the higher 
bleed coefficient, when the transition point from absolute to convective instability 
moves into the region close to the body, the predictions become increasingly worse 
(see figure 24). A possible explanation for this is that, owing to the special shape of 
the u-velocity profiles a t  the trailing edge induced by the modelling of the base bleed, 
the stability analysis no longer describes the wake instability but rather the shear- 
layer instability occurring at  the transition from the base-bleed jet to the separating 

FIGURE 25. Centreline velocity ucL as a function of the base-bleed coefficient cp and the 
coordinate x. 
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boundary layer. Such shear instabilities commonly have higher frequencies than the 
wake instabilities. Monkewitz & Nguyen (1987) give an upper limit of ucL = 0.09 
below which velocity profiles can be absolutely unstable. The centreline velocity ucL 
is shown in figure 25 as a function of the bleed coefficient cp and the coordinate x. 
Comparing figure 22 with figure 25, we confirm the value found by Monkewitz & 
Nguyen (1987). For the velocity profiles next to the plate a t  high bleed coefficient 
(where the minimum velocity does not occur on the centreline) (see figure 19) this 
criterion is also satisfied. 

7. Summary and conclusions 
The numerical simulation of the development of the KBrmin vortex street behind 

a flat plate a t  supercritical Reynolds number Re = 200 reveals that this development 
can be subdivided into four regions (see figure 4). Starting from the quasi-steady 
solution we can observe the exponential temporal growth of a perturbation a t  one 
pure frequency in the linear region. It should be reiterated that no artificial 
perturbation must be introduced to initiate the amplification process, apart from the 
‘numerical fluctuation level ’ caused by the spatial discretization, the choice of the 
initial condition and the accuracy with which the system of equations (16) is 
solved. 

By investigating the velocity signals over time, recorded at many points in the 
wake, it was found that the selected frequency and the corresponding temporal 
amplification rate is the same everywhere in the flow field (figure 7). An exception, 
discussed in $4, occurs in the u-velocity components recorded on the centreline. 
However, the first harmonic of the onset frequency and the double growth rate 
occurring a t  the centreline for t z I00 are consequences of the nonlinearity causing 
the structure change of the perturbation flow and cannot be regarded as the 
appearance of an independent second frequency in the wake development. Given this 
result, the linear growth region could be subdivided into a region t < 100 where the 
flow behaves purely linearly and a second region 100 < t < 240 where the effect of the 
nonlinearity can already be detected but is so small that it does not influence either 
the growth rate or the onset frequency. 

The fact that a single frequency with a well-defined temporal amplification rate is 
dominant during linear growth indicates that the development to the vortex street 
is governed by a true time-growing instability, i.e. the global flow behaves like a self- 
excited oscillator. 

Using base bleed as a control parameter in the numerical simulation it is possible 
to reduce the temporal amplification rate until it is forced to be negative (see 
figure 20), thereby showing the transition from an oscillator to an amplifier. 
Experimental investigations using other devices, e.g. the splitter plate used by 
Roshko (1954) or the ‘control cylinder’ used by Strykowski & Sreenivasan (1985) 
and Strykowski (1986)’ also show that the formation of the vortex street behind 
circular cylinders could be suppressed. For a review of other two-dimensional devices 
that influence the wake see Tanner (1975). We suggest that these devices change the 
stability characteristic of the flow in a similar manner to the base bleed. 

The numerical simulation provides the quasi-steady solution which we believe is 
the appropriate basic state for an investigation using linear stability analysis. In  
particular we use linear, local stability analysis following the recent investigations by 
Koch (1985), Triantafyllou et al. (1986), Monkewitz & Nguyen (1987) and Monkewitz 
(1988). However, in all of these previous investigations the near wake was modelled 
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with analytic functions whereas the present study uses profiles obtained directly 
from the Navier-Stokes equations. The question immediately arises of the extent to 
which local theory can be applied to a non-parallel flow and produce meaningful 
physical results ; this investigation was undertaken to answer that question. From 
the comparison between the results of the numerical simulation and the predictions 
of the stability analysis, it follows that in spite of the simplifying assumptions the 
stability analysis can be used for a qualitative description of the investigated wake 
properties. It predicts qualitatively the structure of the perturbation flow for the 
onset of the instability (see figure 17). The stability curves presented in figure 16 and 
figure 22 reveal that the Orr-Sommerfeld analysis predicts the correct trend of 
decreasing temporal amplification rate with increasing bleed coefficient. 

The wi curves indicate that only a part of the wake flow near the body is absolutely 
unstable. The stability analysis predicts a band of frequencies that can grow locally, 
corresponding to the positive part of the wi curve. To predict which of these local 
modes is selected for the vortex-shedding frequency different selection criteria have 
been proposed by several authors. A classification of these selection criteria was 
needed because, as the numerical simulation shows, the onset frequency selected at  
the beginning of the linear growth region changes by approximately 10 % during the 
wake development until the saturation frequency is reached. Strykowski (1986) 
found, for the wakes behind circular cylinders, that this change increases with 
increasing Reynolds number and is approximately 42 YO at Re = 80, indicating that 
the change is an effect that cannot be neglected. The classification, discussed in $5, 
was based on a flow field of type ‘AB’. It is clear that for a flow of type ‘AF’,  which 
according to Monkewitz & Nguyen (1987) is also relevant for wake flows, the 
initial-resonance criterion of Monkewitz & Nguyen acts similarly to Koch’s criterion. 
The difference is that the frequency would be predicted by the first transition point 
from convective to absolute instability and not by the last one, as according to Koch. 
Under the assumption used by Koch that the linear resonance frequency does not 
differ very much from the nonlinear one, the initial-resonance criterion could also be 
used for the prediction of the saturation frequency. It should be mentioned that, 
owing to the frequency changes occurring during the wake development, the linear 
resonance frequency must not be identical to the onset frequency. While Koch (1985) 
did not consider a flow of type ‘AF’,  Monkewitz & Nguyen (1987) suggested for this 
type of flow that the initial-resonance criterion is more relevant in predicting the 
saturation frequency. Our application of the selection criteria to the investigated 
flow fields shows that the initial-resonance criterion and the maximum-growth 
criterion for the onset frequencies as well as Koch’s criterion for the saturation 
frequencies (apart from the two highest bleed coefficients) can give a satisfactory 
prediction of how these quantities vary as a function of the bleed coefficient. The 
prediction of the temporal amplification rate using the initial-resonance criterion and 
the maximum-growth criterion appears to be too high in all cases investigated. It can 
be seen from the stability calculations that the maximum temporal growth rate is 
always much higher than the growth rate obtained from the global wake behaviour 
(i.e. numerical wake simulation). For this reason the critical control parameter (e.g. 
base-bleed coefficient or Reynolds numbers) cannot be obtained. For a better 
quantitative determination of the critical parameter the linear, global stability 
analysis as used by Jackson (1987) should be applied. 

The authors wish to express sincere thanks to Dr W. Koch and Dr P. J .  Strykowski 
for many simulating discussions concerning this work and their critical review of the 
manuscript. 
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